

McN5691

Catalog No: tcsc7359

Available Sizes
Size: 1mg
Size: 5mg
Size: 10mg
Size: 20mg
Specifications
CAS No: 99254-95-2
Formula: C ₃₀ H ₃₅ NO ₃
Pathway: Membrane Transporter/Ion Channel
Target: Calcium Channel
Purity / Grade: >98%
Solubility: 10 mM in DMSO
Alternative Names: RWJ26240
Observed Molecular Weight: 457.6

Product Description

McN5691 is a voltage-sensitive calcium channel blocker.

IC50 & Target: Calcium Channel^[1]

In Vitro: McN5691 (1 and 10 μ M) prevents 60 mM KCI-induced contraction and calcium uptake and causes concentration-dependent relaxation (EC₅₀=190 μ M) of 30 mM KCI-contracted aortic rings. At or below 10 μ M, McN5691 (McN-5691) has no effects on basal tone or calcium uptake (45Ca) in isolated rings of rabbit thoracic aorta. McN5691 causes complete high affinity inhibition (K_d=39.5 nM) of specific diltiazem binding to the benzothiazepine receptor on the voltage-sensitive calcium channel in skeletal muscle microsomal membranes. In contrast to diltiazem, McN5691 inhibits specific dihydropyridine receptor binding, but the effect is biphasic with high (K_d=4.7 nM) and low (K_d=919.8 nM) affinity components. McN5691 inhibits norepinephrine (NE)-induced contraction (10 μ M) and calcium uptake (1 and 10 μ M) and causes concentration-dependent relaxation (EC₅₀=159 μ M) of 1 μ M NE-contracted rings of rabbit thoracic aorta^[1].

In Vivo: The excretion and metabolism of a 2-ethynylbenzenealkanamine analog, antihypertensive McN5691 (RWJ-26240), in beagle dogs is investigated. A total of 96.8% and 2.8% of the radioactive dose are excreted in feces and urine, respectively, during the 7 days after oral administration of ¹⁴C-McN5691. Of the radioactive dose, 96.8% and 2.8% is recovered in feces and urine, respectively, in the 7 days after oral administration of ¹⁴C-McN5691. More than 87% of the dose is excreted in feces during the 48 hours. McN5691 is extensively metabolized in dogs. Unchanged McN5691 is found in less than 0.1% and 19% of the dose in the 0-24 hour urine and 0-48 hour fecal extract, respectively, and 36% of the sample in the 4 hour plasma^[2]. In the McN5691 (McN-5691) study, vascular resistances tend to be higher in spontaneously hypertensive rat (SHR) than in Wistar-Kyoto (WKY) but the differences are statistically significant only in the cerebellum and the midbrain^[3].

All products are for RESEARCH USE ONLY. Not for diagnostic & therapeutic purposes!