

Fenofibric acid

Catalog No: tcsc2965

Available Sizes

Size: 1g

Size: 5g

Specifications

CAS No: 42017-89-0

Formula:

 $C_{17}H_{15}CIO_4$

Pathway: Cell Cycle/DNA Damage;Immunology/Inflammation

Target:

PPAR;COX

Purity / Grade:

>98%

Alternative Names:

FNF acid

Observed Molecular Weight:

318.75

Product Description

Fenofibric acid, an active metabolite of fenofibrate, is a **PPAR** activitor, with **EC**₅₀s of 22.4 μ M, 1.47 μ M, and 1.06 μ M for PPAR α , PPAR γ and PPAR δ , respectively; Fenofibric acid also inhibits **COX-2** enzyme activity, with an **IC**₅₀ of 48 nM.

IC50 & Target: EC50: 22.4 μ M (PPARα), 1.47 μ M (PPARγ), 1.06 μ M (PPARδ)^[1]

IC50: 48 nM (COX-2)^[2]

In Vitro: Fenofibric acid is a PPAR activitor, with EC_{50} s of 22.4 µM, 1.47 µM, and 1.06 µM for PPAR α , PPAR γ and PPAR δ , respectively ^[1]. Fenofibric acid (10, 25, 50, 75, and 100 nM) dose-dependently inhibits COX-2 enzyme, with IC₅₀ of 48 nM^[2]. Fenofibric acid (500 nM) reduces abundance of AOX1 protein in HepG2 cells^[3]. Fenofibric acid (100 µM) decreases JNK1/2, c-Jun, and p38 MAPK phosphorylation, and prevents the accumulation of reactive oxygen species, endoplasmic reticulum (ER) stress and disruption of blood retinal barrier (BRB) in response to the combination of high-glucose (HG) and hypoxia in ARPE-19 cells. Fenofibric acid (100 µM) activates IGF-IR/Akt/ERK1/2-mediated survival signaling pathways in ARPE-19 cells under HG conditions and hypoxia^[4].

In Vivo: Fenofibric acid (1, 5, 10 mg/kg, p.o.) shows anti-inflammatory activity in Wistar rats with acute inflammation induced by carrageenan^[2].

All products are for RESEARCH USE ONLY. Not for diagnostic & therapeutic purposes!

Copyright 2021 Taiclone Biotech Corp.