

(R) -1,2,3,4-Tetrahydro-3-isoquinolinecarboxylic acid Catalog No: tcsc2843

	Available Sizes
Size:	100mg
Size:	500mg
Size:	5g
Size:	10g
	Specifications
CAS 1037:	No: 33-65-9
Form C ₁₀ H	ula: 11 ^{NO} 2
Path Other	way: s
Targ	et:

Others

Purity / Grade:

>98%

Solubility: 10 mM in DMSO

Alternative Names:

D-phenylalanine analogue

Observed Molecular Weight: 177.2

Copyright 2021 Taiclone Biotech Corp.

Product Description

(R)-1,2,3,4-Tetrahydro-3-isoquinolinecarboxylic acid is a constrained Phe analogue which can fold into a beta-bend and a helical structure, and to adopt a preferred side-chain disposition in the peptide.

IC50 value:

Target:

Three Tic-containing (Tic = 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid) model peptides were synthesized to assess the tendency of this constrained Phe analogue to fold into a beta-bend and a helical structure, and to adopt a preferred side-chain disposition. The results of the solution conformational analysis, performed by using Fourier transform infrared absorption and 1H nuclear magnetic resonance, indicate that in chloroform the -Aib-D-Tic-Aib-, -(Aib)2-D-Tic-(Aib)2-, and -L-Pro-D-Tic- sequences fold into intramolecularly H-bonded forms to a great extent. An X-ray diffraction analysis on p-BrBz-(Aib)2-DL-Tic-(Aib)2-OMe monohydrate and p-BrBz-L-Pro-D-Tic-NHMe allows us to conclude that, while the pentapeptide methylester forms an incipient (distorted) 3(10)-helix, the dipeptide methylamide adopts a type-II beta-bend conformation. In both cases, the D-Tic side-chain conformation is D, gauche(-). The implications for the use of the Tic residue in designing conformationally restricted analogues of bioactive peptides are briefly discussed.

All products are for RESEARCH USE ONLY. Not for diagnostic & therapeutic purposes!

Copyright 2021 Taiclone Biotech Corp.