

Cabergoline

Catalog No: tcsc2804

Available Sizes

Size: 5mg

Size: 10mg

Size: 50mg

Specifications

CAS No:

81409-90-7

Formula:

 $C_{26}H_{37}N_5O_2$

Pathway: GPCR/G Protein;Neuronal Signaling;Autophagy

Target:

Dopamine Receptor; Dopamine Receptor; Autophagy

Purity / Grade:

Solubility: DMSO : \geq 33 mg/mL (73.07 mM)

Alternative Names:

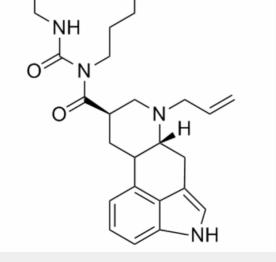
FCE-21336

Observed Molecular Weight:

451.6

Product Description

Copyright 2021 Taiclone Biotech Corp.



Cabergoline is an ergot derived-dopamine D_2 -like receptor agonist that has high affinity for D_2 , D_3 , and $5-HT_{2B}$ receptors (K_i =0.7, 1.5, and 1.2, respectively).

IC50 & Target: Ki: 0.7 (Dopamine D₂ receptor), 1.5 (Dopamine D₃ receptor), 1.2 (5-HT_{2B} receptor)^[1]

In Vitro: Cabergoline acts as a potent agonist of D₂, D₃ and 5-HT_{2B} receptors. Pretreatment with Cabergoline inhibits H₂O₂-induced neuronal cell death in a dose-dependent manner. In the following experiments, 10 μ M of Cabergoline is used to investigate its neuroprotective effects. MAP2 staining reveals that Cabergoline significantly suppresses the loss of neurons caused by H₂O₂ incubation. The detection of apoptotic nuclear condensation suggested that Cabergoline prevents apoptotic cell death following H₂O₂ exposure^[1].

In Vivo: Cabergoline has a longer elimination half-life (63 to 109 h) compared with other D₂-like receptor agonists, both a longlasting clinical effect following single-dose administration, and an improvement in the quality of life of patients with chronic diseases are expected^[1]. The most significant reduction in rapid eye movement (REM) sleep bout number occurred during the light phase, in which Cabergoline-injected female handled mice has 67.3% less REM sleep bouts ($F_{(1,11)}$ =12.892, P=0.004) than Cabergolineinjected females that are restrained, although the greatest number in reduction of REM sleep bouts occurr during the dark phase (82.3% fewer REM sleep bouts; $F_{(1,11)}$ =3.667, P=0.082). In male mice, Cabergoline reduces baseline Prolactin (PRL) levels (98.5%; F (1,6)=13.192, P=0.011) from 5.8±1.3 to 0.08 ng/mL within 2 hours of injection. After a 7-day recovery period, PRL levels return to values that are not different from baseline (5.0±0.60 ng/mL; $F_{(1,6)}$ =0.715, P=0.43)^[2].

`N´

All products are for RESEARCH USE ONLY. Not for diagnostic & therapeutic purposes!

Copyright 2021 Taiclone Biotech Corp.