

Chlorpromazine (hydrochloride)

Catalog No: tcsc2507

Available Sizes

Size: 1g

Size: 5g

Specifications

CAS No:

69-09-0

Formula:

 $C_{17}^{H}_{20}^{Cl}_{2}^{N}_{2}^{S}$

Pathway:

GPCR/G Protein; Neuronal Signaling; Autophagy; Neuronal Signaling; GPCR/G Protein; Membrane Transporter/Ion Channel; Membrane Transporter/Ion Channel

Target:

Dopamine Receptor;Dopamine Receptor;Autophagy;5-HT Receptor;5-HT Receptor;Potassium Channel;Sodium Channel

Purity / Grade:

>98%

Solubility:

DMSO : \geq 60 mg/mL (168.86 mM)

Observed Molecular Weight:

355.33

Product Description

Chlorpromazine Hydrochloride is an antagonist of the **dopamine D2**, **5HT2A**, **potassium channel** and **sodium channel**. Chlorpromazine binds with D2 and 5HT2A with **K**_is of 363 nM and 8.3 nM, respectively.

IC50 & Target: Ki: 363 nM (dopamine D₂ receptor), 8.3 nM (5-HT_{2A} receptor)^[4]

In Vitro: Chlorpromazine (3, 10, 20, 40, and 60 μ M) decreases the peak currents of hNav1.7 in a concentration-dependent manner, with IC $_{50}$ of 25.9 μ M with a Hill coefficient of 2.3. Chlorpromazine (25 μ M) produces strong use-dependent inhibition of the hNav1.7 current. Chlorpromazine blocks the hNav1.7 channel, independent of calmodulin^[1]. Chlorpromazine blocks HERG potassium channels with an IC $_{50}$ value of 21.6 μ M and a Hill coefficient of 1.11. Chlorpromazine (1, 10, 100 μ M) blocks HERG potassium channels expressed in Xenopus laevis oocytes in a concentration-dependent manner. Chlorpromazine blocks HERG potassium channels in the activated state^[5].

In Vivo: Chlorpromazine (2 mg/kg, i.p.)-induced neurobehavioural abnormalities (NAs) are characterized by significant increase in cataleptic behaviour and loared spontaneous activity reaction time in mice^[2]. Chlorpromazine (1 or 5 mg/kg, i,p.) prevents ketamine (KET) from increasing average spectral power of delta and gamma-high bands on the 5th and 10th days of treatment in rats^[3].

All products are for RESEARCH USE ONLY. Not for diagnostic & therapeutic purposes!