

Ciprofloxacin

Catalog No: tcsc2410

Available Sizes		
Size: 1g		
Size: 5g		
Specifications		
CAS No: 85721-33-1		
Formula: C ₁₇ H ₁₈ FN ₃ O ₃		
Pathway: Anti-infection		
Target: Bacterial		
Purity / Grade: >98%		
Solubility: DMSO:		
Alternative Names: Bay-09867		
Observed Molecular Weight: 331.34		
Draduct Description		

Product Description

Ciprofloxacin is a fluoroquinolone antibiotic, exhibiting potent **antibacterial** activity.

In Vitro:

Ciprofloxacin is a fluoroquinolone antibiotic, exhibiting potent antibacterial activity^[1]. Ciprofloxacin (CIP) shows potent activity against *Y. pestis* with MIC_{90} of 0.03 μ g/mL^[2].

In Vivo: Ciprofloxacin (1 mg/L) induces glutathione-S-transferase (GST) activity, in contrast with inhibited GST and Catalase (CAT) of larvae exposed to enrofloxacin. Ciprofloxacin (\geq 10 µg/L) and enrofloxacin are ecotoxic for development, growth, detoxifying, and oxidative stress enzymes in anuran amphibian larvae^[1]. In a murine model of pneumonic plague, Ciprofloxacin (30 mg/kg, i.p.) results in a drug exposure which is similar to the drug exposure observed in human following a 500 mg dose of oral Ciprofloxacin. Intraperitoneal Ciprofloxacin reduces the lung bacterial load compare to controls treated with intraperitoneal PBS^[3].

All products are for RESEARCH USE ONLY. Not for diagnostic & therapeutic purposes!