

AVE 0991 (sodium salt)

Catalog No: tcsc1753

Available Sizes

Size: 5mg

Size: 10mg

Size: 50mg

Size: 100mg

Specifications

CAS No:

306288-04-0

Formula:

 $\mathsf{C}_{29}\mathsf{H}_{31}\mathsf{N}_{4}\mathsf{NaO}_{5}\mathsf{S}_{2}$

Pathway: GPCR/G Protein

Target:

Angiotensin Receptor

Purity / Grade:

>98%

Solubility:

DMSO : ≥ 55 mg/mL (91.26 mM)

Observed Molecular Weight:

602.7

Product Description

AVE 0991 sodium salt is a nonpeptide and orally active **Ang-(1-7) receptor Mas** agonist. AVE 0991 competes for high-affinity

Copyright 2021 Taiclone Biotech Corp.

binding of [¹²⁵I]-Ang-(1-7) to bovine aortic endothelial cell membranes with IC_{50} of 21±35 nM.

IC50 & Target: IC50: 21±35 nM (Ang-(1-7) receptor)^[1]

In Vitro: AVE 0991 is a nonpeptide compound that evokes effects similar to Ang-(1-7) on the endothelium. AVE 0991 and unlabeled Ang-(1-7) compete for high-affinity binding of [¹²⁵I]-Ang-(1-7) to bovine aortic endothelial cell membranes with IC₅₀s of 21±35 and 220±280 nM, respectively. Peak concentrations of NO and O₂⁻ release by AVE 0991 sodium salt and Ang-(1-7) (both 10 μ M) are not significantly different (NO: 295±20 and 270±25 nM; O₂⁻: 18±2 and 20±4 nM). However, the released amount of bioactive NO is ≈5 times higher for AVE 0991 in comparison to Ang-(1-7)^[1].

In Vivo: AVE 0991 (0.58 nmol/g) produces a significant decrease of water diuresis in WT mice compared with vehicle-treated animals ($0.06\pm0.03 \text{ mL}$ versus 0.27 ± 0.05 ; n=9 for each group; P2O versus $681.1\pm165.8 \text{ mOsm/KgH}_2\text{O}$ in vehicle-treated mice; PMas abolishes the antidiuretic effect of AVE 0991 during water loading ($0.37\pm0.10 \text{ mL}$ [n=9] versus $0.27\pm0.03 \text{ mL}$ [n=11] in AVE 0991-treated mice). As observed with C57BL/6 mice, administration of AVE 0991 (0.58 nmol/g) in water-loaded Swiss mice also produces a significant decrease of the urinary volume compared with vehicle-treated animals ($0.13\pm0.05 \text{ mL}$ [n=16] versus $0.51\pm0.04 \text{ mL}$ [n=40]; P[2]. One week of treatment with AVE-0991 produces a significant decrease in perfusion pressure ($56.55\pm0.86 \text{ vs.}$ 68.73±0.69 mmHg in vehicle-treated rats) and an increase in systolic tension ($11.40\pm0.05 \text{ vs.}$ 9.84±0.15 g in vehicle-treated rats), rate of tension rise (+dT/dt; $184.30\pm0.50 \text{ vs.}$ 155.20±1.97 g/s in vehicle-treated rats), rate of tension fall (-dT/dt; $179.60\pm1.39 \text{ vs.}$ 150.80±2.42 g/s in vehicle-treated rats). A slight increase in heart rate (HR) is also observed ($220.40\pm0.71 \text{ vs.}$ $214.20\pm0.74 \text{ beats/min in vehicle-treated rats}$].

All products are for RESEARCH USE ONLY. Not for diagnostic & therapeutic purposes!

Copyright 2021 Taiclone Biotech Corp.