

AVE 0991

Catalog No: tcsc1752

<u>a</u>	Available Sizes
Size	: 5mg
Size	: 10mg
Size	: 50mg
Size	: 100mg
	Specifications
CAS 3044	No: 62-19-9
Forn C ₂₉ H	ាula: 32 ^N 4 ^O 5 ^S 2
	way: R/G Protein
Targ Angio	et: otensin Receptor
Puri 989	ty / Grade: %
	bility: M in DMSO
Obse	erved Molecular Weight:

Product Description

580.72

AVE 0991 is a nonpeptide and orally active **Ang-(1-7) receptor Mas** agonist. AVE 0991 competes for high-affinity binding of [125]-

Ang-(1-7) to bovine aortic endothelial cell membranes with IC_{50} of 21±35 nM.

IC50 & Target: IC50: 21±35 nM (Ang-(1-7) receptor)[1]

In Vitro: AVE 0991 is a nonpeptide compound that evokes effects similar to Ang-(1-7) on the endothelium. AVE 0991 and unlabeled Ang-(1-7) compete for high-affinity binding of [125 I]-Ang-(1-7) to bovine aortic endothelial cell membranes with IC₅₀s of 21±35 and 220±280 nM, respectively. Peak concentrations of NO and O_2^- release by AVE 0991 sodium salt and Ang-(1-7) (both 10 μ M) are not significantly different (NO: 295±20 and 270±25 nM; O_2^- : 18±2 and 20±4 nM). However, the released amount of bioactive NO is ≈5 times higher for AVE 0991 in comparison to Ang-(1-7)[11].

In Vivo: AVE 0991 (0.58 nmol/g) produces a significant decrease of water diuresis in WT mice compared with vehicle-treated animals (0.06 \pm 0.03 mL versus 0.27 \pm 0.05; n=9 for each group; P2O versus 681.1 \pm 165.8 mOsm/KgH₂O in vehicle-treated mice; PMas abolishes the antidiuretic effect of AVE 0991 during water loading (0.37 \pm 0.10 mL [n=9] versus 0.27 \pm 0.03 mL [n=11] in AVE 0991-treated mice). As observed with C57BL/6 mice, administration of AVE 0991 (0.58 nmol/g) in water-loaded Swiss mice also produces a significant decrease of the urinary volume compared with vehicle-treated animals (0.13 \pm 0.05 mL [n=16] versus 0.51 \pm 0.04 mL [n=40]; P[2]. One week of treatment with AVE-0991 produces a significant decrease in perfusion pressure (56.55 \pm 0.86 vs. 68.73 \pm 0.69 mmHg in vehicle-treated rats) and an increase in systolic tension (11.40 \pm 0.05 vs. 9.84 \pm 0.15 g in vehicle-treated rats), rate of tension rise (+dT/dt; 184.30 \pm 0.50 vs. 155.20 \pm 1.97 g/s in vehicle-treated rats), rate of tension fall (-dT/dt; 179.60 \pm 1.39 vs. 150.80 \pm 2.42 g/s in vehicle-treated rats). A slight increase in heart rate (HR) is also observed (220.40 \pm 0.71 vs. 214.20 \pm 0.74 beats/min in vehicle-treated rats]

All products are for RESEARCH USE ONLY. Not for diagnostic & therapeutic purposes!