

Pacritinib

Catalog No: tcsc1741

Available Sizes
Size: 5mg
Size: 10mg
Size: 50mg
Size: 100mg
Specifications
CAS No: 937272-79-2
Formula: C ₂₈ H ₃₂ N ₄ O ₃
Pathway: Protein Tyrosine Kinase/RTK;Epigenetics;Stem Cell/Wnt;JAK/STAT Signaling
Target: FLT3;JAK;JAK;JAK
Purity / Grade: >98%
Solubility: DMSO : 5.4 mg/mL (11.43 mM; Need ultrasonic and warming)
Alternative Names: SB1518
Observed Molecular Weight: 472.58

Product Description

Pacritinib is a potent inhibitor of both wild-type **JAK2** (IC $_{50}$ =23 nM) and **JAK2^{V617F}** mutant (IC $_{50}$ =19 nM). Pacritinib also inhibits **FLT3** (IC $_{50}$ =22 nM) and its mutant **FLT3^{D835Y}** (IC $_{50}$ =6 nM).

IC50 & Target: IC50: 6 nM (FLT3^{D835Y}), 22 nM (FLT3^{wt}), 19 nM (JAK2^{V617F}), 23 nM (JAK2^{wt})^[1]

In Vitro: Relative to JAK2, Pacritinib (SB1518) is two-fold less potent against TYK2 (IC $_{50}$ =50 nM), 23-fold less potent against JAK3 (IC $_{50}$ =520 nM) and 56-fold less potent against JAK1 (IC $_{50}$ =1280 nM). The rest of the evaluated kinases show m). Pacritinib inhibits MV4-11 and MOLM-13 cells (both of which are cell lines derived from human acute myeloid leukemias driven by an FLT3 ITD mutation) with IC $_{50}$ of 47 and 67 nM, respectively. Pacritinib inhibits Karpas 1106P and Ba/F3-JAK2^{V617F} cells (which are cell lines dependent on JAK2 signaling) with IC $_{50}$ of 348 and 160 nM, respectively^[1]. FLT3-ITD harboring MV4-11 cells are treated for 3 h with different concentrations of Pacritinib (SB1518) and pFLT3, pSTAT5 and pERK1/2 levels are quantified. Pacritinib leads to a dose-dependent decrease of pFLT3, pSTAT5, pERK1/2 and pAkt with IC $_{50}$ of 80, 40, 33 and 29 nM, respectively. The IC $_{50}$ on auto-phosphorylation of FLT3-wt in RS4;11 is four-fold higher (IC $_{50}$ =600 nM) compare with FLT3-ITD in MV4-11 and MOLM-13 cells. However, STAT5 inhibition is detected at much lower concentrations of Pacritinib (IC $_{50}$ =8 nM)^[2].

In Vivo: For evaluation of efficacy in the Ba/F3-JAK2^{V617F} engraftment model, mice are treated with Pacritinib (SB1518) at doses of 50 or 150 mg/kg p.o. q.d. for 13 days, with drug dosing starting 4 days after cell inoculation. At study termination, the vehicle control mice exhibit splenomegaly and hepatomegaly (~7- and 1.3-fold, respectively), reminiscent of the symptoms found in patients with symptomatic myelofibrosis. SB1518 treatment at 150 mg/kg p.o. q.d. significantly ameliorates all these symptoms, with 60% (\pm 9%) normalization of spleen weight and 92% (\pm 5%) normalization of liver weight and is well tolerated without significant weight loss or any hematological toxicities, including thrombocytopenia and anemia^[1]. In rats, Pacritinib (SB1518) shows moderately fast absorption (t_{max} =4 h), with a peak concentration of 114 ng/mL, AUC of 599 ng•h/mL, and a terminal half-life of ~6 h following a single oral dose of 10 mg/kg. In dogs, Pacritinib (SB1518) is rapidly absorbed (t_{max} =2.0 h), with a peak concentration of ~12 ng/mL, AUC of 53 ng•h/mL, and a terminal half-life of 3.4 h following a single oral dose of 3 mg/kg^[3].

All products are for RESEARCH USE ONLY. Not for diagnostic & therapeutic purposes!