

Cariprazine (hydrochloride)

Catalog No: tcsc1570

Available Sizes
Size: 5mg
Size: 10mg
Size: 50mg
Size: 100mg
Specifications
CAS No: 1083076-69-0
Formula: C ₂₁ H ₃₃ Cl ₃ N ₄ O
Pathway: GPCR/G Protein;Neuronal Signaling;Neuronal Signaling;GPCR/G Protein
Target: Dopamine Receptor;Dopamine Receptor;5-HT Receptor;5-HT Receptor
Purity / Grade: >98%
Solubility: 10 mM in DMSO
Alternative Names: RGH188 hydrochloride
Observed Molecular Weight: 463.87

Product Description

Cariprazine hydrochloride is a novel antipsychotic drug candidate that exhibits high affinity for the $\mathbf{D_3}$ ($\mathbf{K_i}$ =0.085 nM) and $\mathbf{D_2}$ ($\mathbf{K_i}$ =0.49 nM) receptors, and moderate affinity for the **5-HT**_{1 Δ} receptor ($\mathbf{K_i}$ =2.6 nM).

IC50 & Target: Ki: 0.49 nM (D2 receptor), 0.085 nM (D3 receptor), 2.6 nM (5-HT1A receptor)^[1]

In Vitro: Cariprazine stimulates inositol phosphate (IP) formation with a high potency (pEC $_{50}$ 8.5) with relatively low efficacy (E $_{max}$ 30%)^[2]. Cariprazine, a novel candidate antipsychotic, demonstrated approximately 10-fold higher affinity for human D $_3$ versus human D $_2$ L and human D $_2$ S receptors (pK $_i$ 10.07, 9.16, and 9.31, respectively). Cariprazine displays high affinity at human serotonin (5-HT) type 2B receptors (pK $_i$ 9.24) with pure antagonism. Cariprazine has lower affinity at human and rat hippocampal 5-HT $_{1A}$ receptors (pK $_i$ 8.59 and 8.34, respectively) and demonstrates low intrinsic efficacy. Cariprazine displays low affinity at human 5-HT $_{2A}$ receptors (pK $_i$ 7.73). Moderate or low affinity for histamine H $_1$ and 5-HT $_2$ C receptors (pK $_i$ 7.63 and 6.87, respectively) suggest Cariprazine\'s reduced propensity for adverse events related to these receptors [2]. Cariprazine is over sixfold more potent (EC $_{50}$ =1.4 nM) than Aripiprazole (EC $_{50}$ =9.2 nM) in inhibiting isoproterenol-induced cAMP production in HEK-293 cells^[4].

In Vivo: Administration of Cariprazine (30 μ g/kg) reduces the striatal uptake of both radioligands to the level of nonspecific binding compared with baseline PET measurements. Cariprazine has negligible effect on the time-activity curves in the cerebellum. At doses of 5.0 and 30 μ g/kg, Cariprazine causes a dose-dependent dopamine D_2/D_3 receptor occupancy of ~45% and ~80% for both antagonist [\$^{11}C] raclopride and agonist radioligand [\$^{11}C]MNPA. Receptor occupancy of dopamine D_2/D_3 receptors calculated using the transient equilibrium and the MRTM2 methods ranged from 5% at the lowest dose (1.0 μ g/kg) to 94% at the highest dose (300 μ g/kg)[\$^{11}]. The effects of 5 doses of Cariprazine (ranging from 0.005 to 0.15 mg/kg) are examined on EPM behavior of wild-type mice. Whereas lower doses of Cariprazine (0.005 to 0.02 mg/kg) do not alter the time spent in open arms, the two higher doses (0.08 and 0.15 mg/kg) lead to a significant decline of this measure (ANOVA, (F(5,52)=4.20; p=0.0032)). Moreover, the two higher doses of Cariprazine also lead to a significant decrease in the total number of arm entries (F(5,52)=7.21; p=0.0001)) but this decrease in the total number of arm entries is largely accounted for by a significant decrease in the number of closed arm entries (F(5,52)=11.75; p=0.0001)). The two highest doses of Cariprazine (0.08 and 0.15 mg/kg) have significant effects on locomotor activity, but doses ranging from 0.005 to 0.02 mg/kg do not affect anxiety-like behavior or locomotor activity in the EPM test[\$^{13}]. A significant (P[4]].

All products are for RESEARCH USE ONLY. Not for diagnostic & therapeutic purposes!