

Vinblastine (sulfate)

Catalog No: tcsc1365

A A	vailable Sizes
Size: 50	mg
Size: 10	0mg
Size: 20	0mg
Size: 50	0mg
Size: 1g	
Size: 2g	
Size: 5g	
S _I	pecifications
CAS No: 143-67-9	
Formula	
Pathwa y	y: e/DNA Damage;Cytoskeleton;Autophagy
Target: Microtub	ule/Tubulin;Microtubule/Tubulin;Autophagy
Purity / >98%	Grade:
Solubilit DMSO : ≥	ty: ≥ 44 mg/mL (48.40 mM)

Alternative Names:

Vincaleukoblastine sulfate salt

Observed Molecular Weight:

909.05

Product Description

Vinblastine sulfate is a cytotoxic alkaloid used against various cancer types. Vinblastine sulfate inhibits the formation of microtubule and suppresses nAChR with an IC_{50} of 8.9 μ M.

IC50 & Target: IC50: 8.9 μM(nAChR)^[1]

In Vitro: Vinblastine does not depolymerize spindle microtubules, yet it powerfully blocks mitosis (for example, IC₅₀ 0.8 nM in HeLa cells) and cells die by apoptosis^[2]. In NB4 cells, vinblastine produces alteration of p53 and DNA fragmentation. Vinblastine treatment has an antiproliferative effect via the induction of apoptosis producing Bax/Bcl-2 imbalance. Vinblastine treatment suppresses NFκB expression and depresses NFκB-DNA binding activity while maintaining JNK activation that subsequently results in apoptotic response through caspase-dependent pathway^[3]. Vinblastine is found to trigger apoptosis as evidenced by the loss of mitochondrial membrane potential, the release of both cytochrome c and apoptosis inducing factor, activation of caspase-9 and 3, and cleavage of Poly (ADP-ribose)-Polymerase^[4].

In Vivo: Vinblastine is a widely used anticancer drug with undesired side effects. Its conjugation with carrier molecules could be an efficient strategy to reduce these side effects^[5].

All products are for RESEARCH USE ONLY. Not for diagnostic & therapeutic purposes!