

Mibefradil

Catalog No: tcsc1218

Available Sizes
Size: 5mg
Size: 10mg
Size: 50mg
Specifications
CAS No: 116644-53-2
Formula: C ₂₉ H ₃₈ FN ₃ O ₃
Pathway: Membrane Transporter/Ion Channel
Target: Calcium Channel
Purity / Grade: >98%
Solubility: 10 mM in DMSO
Alternative Names: Ro 40-5967
Observed Molecular Weight: 495.63

Product Description

Mibefradil is a **calcium channel** blocker with moderate selectivity for T-type Ca²⁺ channels displaying IC_{50} s of 2.7 μ M and 18.6 μ M for T-type and L-type currents, respectively.

IC50 & Target: IC50: 2.7 μ M (T-type calcium channel), 18.6 μ M (L-type calcium channel) [1]

In Vitro: Mibefradil inhibits reversibly the T- and L-type currents with IC $_{50}$ values of 2.7 and 18.6 μ M, respectively. The inhibition of the L-type current is voltage-dependent, whereas that of the T-type current is not. Ro 40-5967 blocks T-type current already at a holding potential of -100 mV $^{[1]}$ At a higher concentration (20 μ M), Mibefradil reduces the amplitude of excitatory junction potentials (by 37±10 %), slows the rate of repolarisation (by 44±16 %) and causes a significant membrane potential depolarisation (from -83±1 mV to -71±5 mV). At a higher Mibefradil concentration (20 μ M) there is significant membrane potential depolarisation and a slowing of repolarisation. These actions of Mibefradil are consistent with K $^+$ channel inhibition, which has been shown to occur in human myoblasts and other cells $^{[2]}$.

In Vivo: The hearing thresholds of the 24-26 week old C57BL/6J mice differed following the 4-week treatment period. The hearing threshold at 24 kHz is significantly decreased in the Mibefradil-treated and benidipine-treated groups compared with the saline-treated group (P[3]. Compared with the saline-treated group, rats receiving Mibefradil or Ethosuximide show significant lower Ca_V3.2 expression in the spinal cord and DRG^[4].

All products are for RESEARCH USE ONLY. Not for diagnostic & therapeutic purposes!