

Mibefradil (dihydrochloride)

Catalog No: tcsc1189

Available Sizes

Size: 5mg

Size: 10mg

Size: 50mg

Specifications

CAS No:

116666-63-8

Formula: C₂₉H₄₀Cl₂FN₃O₃

Pathway: Membrane Transporter/Ion Channel

Target: Calcium Channel

Purity / Grade:

Solubility: H2O : ≥ 125 mg/mL (219.86 mM)

Alternative Names:

Ro 40-5967

Observed Molecular Weight:

568.55

Product Description

Copyright 2021 Taiclone Biotech Corp.

Mibefradil dihydrochloride is a **calcium channel** blocker with moderate selectivity for T-type Ca²⁺ channels displaying IC_{50} s of 2.7 μ M and 18.6 μ M for T-type and L-type currents, respectively.

IC50 & Target: IC50: 2.7 μ M (T-type calcium channel), 18.6 μ M (L-type calcium channel)^[1]

In Vitro: Mibefradil dihydrochloride inhibits reversibly the T- and L-type currents with IC₅₀ values of 2.7 and 18.6 μ M, respectively. The inhibition of the L-type current is voltage-dependent, whereas that of the T-type current is not. Ro 40-5967 blocks T-type current already at a holding potential of -100 mV^[1] At a higher concentration (20 μ M), Mibefradil reduces the amplitude of excitatory junction potentials (by 37±10 %), slows the rate of repolarisation (by 44±16 %) and causes a significant membrane potential depolarisation (from -83 ± 1 mV to -71 ± 5 mV). At a higher Mibefradil concentration (20 μ M) there is significant membrane potential depolarisation and a slowing of repolarisation. These actions of Mibefradil are consistent with K⁺ channel inhibition, which has been shown to occur in human myoblasts and other cells^[2].

In Vivo: The hearing thresholds of the 24-26 week old C57BL/6J mice differ following the 4-week treatment period. The hearing threshold at 24 kHz is significantly decreased in the Mibefradil-treated and benidipine-treated groups compared with the saline-treated group (P[3]. Compared with the saline-treated group, rats receiving Mibefradil or Ethosuximide show significant lower Ca_V3.2 expression in the spinal cord and DRG^[4].

Copyright 2021 Taiclone Biotech Corp.