

Chenodeoxycholic Acid

Catalog No: tcsc0834

I	Available Sizes
Size:	100mg
Size:	500mg
	Specifications
CAS I 474-2	
Form	
Path Metab	way: polic Enzyme/Protease;Metabolic Enzyme/Protease
Targe FXR;E	et: ndogenous Metabolite
Purit ; >98%	y / Grade:
	bility: 0 : ≥ 50 mg/mL (127.37 mM)
Alter CDCA	native Names:
Obse	rved Molecular Weight:

Product Description

Chenodeoxycholic Acid is a hydrophobic primary bile acid that activates nuclear receptors (FXR) involved in cholesterol metabolism.

In Vitro:

392.57

Chenodeoxycholic acid (CDCA) and Deoxycholic acid (DCA) both inhibit 11 beta HSD2 with IC $_{50}$ values of 22 mM and 38 mM, respectively and causes cortisol-dependent nuclear translocation and increases transcriptionalactivity of mineralocorticoid receptor (MR) $^{[1]}$. Chenodeoxycholic acid is able to stimulate Ishikawa cell growth by inducing a significant increase in Cyclin D1 protein and mRNA expression through the activation of the membrane G protein-coupled receptor (TGR5)-dependent pathway $^{[2]}$. Chenodeoxycholic acid (CDCA) induces LDL receptor mRNA levels approximately 4 fold and mRNA levels for HMG-CoA reductase and HMG-CoA synthase two fold in a cultured human hepatoblastoma cell line, Hep $^{[3]}$. Chenodeoxycholic acid-induced Isc is inhibited (\geq 67%) by Bumetanide, BaCl $_2$, and the cystic fibrosis transmembrane conductance regulator (CFTR) inhibitor CFTRinh-172. Chenodeoxycholic acid-stimulated Isc is decreased 43% by the adenylate cyclase inhibitor MDL12330A and Chenodeoxycholic acid increases intracellular cAMP concentration $^{[4]}$. Chenodeoxycholic acid treatment activates C/EBP $_3$, as shown by increases in its phosphorylation, nuclear accumulation, and expression in HepG2 cells. Chenodeoxycholic acid enhances luciferase gene transcription from the construct containing -1.65-kb GSTA2 promoter, which contains C/EBP response element (pGL-1651). Chenodeoxycholic acid treatment activates AMP-activated protein kinase (AMPK), which leads to extracellular signal-regulated kinase 1/2 (ERK1/2) activation, as evidenced by the results of experiments using a dominant-negative mutant of AMPK $_4$ and chemical inhibitor $^{[5]}$.

All products are for RESEARCH USE ONLY. Not for diagnostic & therapeutic purposes!