

Capecitabine

Catalog No: tcsc0768

Available Sizes

Size: 1g

Size: 5g

Size: 10g

Specifications

CAS No:

154361-50-9

Formula:

 $C_{15}^{H}_{22}^{FN}_{3}^{O}_{6}$

Pathway:

Cell Cycle/DNA Damage; Cell Cycle/DNA Damage

Target:

Nucleoside Antimetabolite/Analog; DNA/RNA Synthesis

Purity / Grade:

>98%

Solubility:

DMSO: 100 mg/mL (278.28 mM; Need ultrasonic); H2O: ≥ 33.33 mg/mL (92.75 mM)

Observed Molecular Weight:

359.35

Product Description

Capecitabine is an oral prodrug that is converted to its only active metabolite, fluorouracil (FU), by thymidine phosphorylase.

IC50 & Target: DNA/RNA Synthesis^[1]

In Vitro: Capecitabine is an anti-cancer chemotherapy drug. It is classified as an antimetabolite. Capecitabine is converted into 5′-deoxy-5-fluorocytidine (5′DFCR), 5′-deoxy-5-fluorouridine (5′DFUR) and 5-fluorouracil (5-FU) by carboxylesterases (CES1 and 2), cytidine deaminase (CDD), and thymidine phosphorylase (TP), in both liver and tumour. Capecitabine induces a significant cytotoxic effect in vitro only at high concentrations. Mean IC_{50} values vary from 860 μ M in COLO205 cells to 6000 μ M in HCT8 cells^[2].

In Vivo: A pharmacokinetic/pharmacodynamic study is carried out in mice bearing HCT 116 xenografts receiving 0.52 and 2.1 mmol/kg/d of Capecitabine by oral gavage. Capecitabine administered at 0.52 mmol/kg/day induces partial control of HCT 116 xenografts tumour growth: growth rate = 7.5 ± 0.5 on day 21. Capecitabine 2.1 mmol/kg/day achieves complete control of tumor growth during the treatment period: growth rate = 1 ± 0.2 on day $21^{[2]}$.

All products are for RESEARCH USE ONLY. Not for diagnostic & therapeutic purposes!