

Naltrexone (Hydrochloride)

Catalog No: tcsc0763

Available Sizes

Size: 100mg

Size: 250mg

Specifications

CAS No:

16676-29-2

Formula:

 $C_{20}H_{24}CINO_4$

Pathway:

GPCR/G Protein; Neuronal Signaling

Target:

Opioid Receptor; Opioid Receptor

Purity / Grade:

>98%

Solubility:

DMSO: ≥ 33 mg/mL

Observed Molecular Weight:

377.86

Product Description

Naltrexone hydrochlorideis an opioid receptor antagonist used primarily in the management of alcohol dependence and opioid dependence.

IC50 Value:

Target: Opioid Receptor

Naltrexone is competitive antagonist for μ , κ , δ , and σ -opioid receptors, Naltrexone has greater oral efficacy and longer duration of action than naloxone. Naltrexone treatment caused a doubling in the density of [3H]DAMGO binding sites in both whole brain membranes and the 7315c cell membranes. Naltrexone treatment may have slightly diminished the affinity of mu opioid receptors for [3H]DAMGO (by 1.5- to 2-fold), but the precision of the assay was inadequate to determine whether this difference was significant. Naltrexone treatment also had no effect on the potency or efficacy of guanosine 5\'-O-(3-thiotriphosphate) in diminishing [3H]DAMGO binding to either whole brain or 7315c cell membranes. Naltrexone which has no SP receptor antagonistic action, not only indirectly acts on SP-ergic neurons but also causes a change in the apparent affinity of NK-1 receptor (as reflected by changes in IC50 values) in the striatum. Cellular inositol-1,4,5-trisphosphate [Ins(1,4,5)P3], quantified by a highly sensitive and selective radioreceptor mass assay, was increased in the striatum by 28% relative to control levels.

All products are for RESEARCH USE ONLY. Not for diagnostic & therapeutic purposes!