Tideglusib **Catalog No: tcsc0613** ## **Available Sizes** Size: 10mg Size: 50mg Size: 100mg ## **Specifications** CAS No: 865854-05-3 Formula: $C_{19}H_{14}N_2O_2S$ **Pathway:** Stem Cell/Wnt;PI3K/Akt/mTOR **Target:** GSK-3;GSK-3 **Purity / Grade:** >98% **Solubility:** DMSO: 12.5 mg/mL (37.38 mM; Need ultrasonic and warming) **Alternative Names:** NP-12;NP031112 **Observed Molecular Weight:** 334.39 ## **Product Description** Tideglusib is an irreversible **GSK-3** inhibitor with IC_{50} of 5 nM and 60 nM for **GSK-3\beta^{WT}** (1 h preincubation) and **GSK-3\beta^{C199A}** (1 h preincubation), respectively. IC50 & Target: IC50: 5 nM (GSK-3 β ^{WT}), 60 nM (GSK-3 β ^{C199A})^[1] In Vitro: Tideglusib (NP12) is a small heterocyclic thiadiazolidinone (TDZD) derivative, which is an ATP-non competitive inhibitor of GSK-3 β with an IC₅₀ value in the micromolar range^[2]. Incubation of both astrocyte and microglial cultures with Tideglusib (NP031112) completely abrogates the induction of TNF- α and COX-2 expression after glutamate treatment. These effects of NP031112 are not caused by a loss of cell viability, because the 24 h exposure of astrocyte and microglial cells to this TDZD does not modify cell viability^[3]. In Vivo: Tideglusib (NP12) treatment correlates with an increase of 46% as an average in the inhibitory phosphorylation of GSK-3 β at Ser-9 in the brains of APP^{SW}-tau^{VIW} mice, and the levels of the inactive from of the enzyme in NP12 treated mice are comparable to those found in wild-type littermate controls (p=0.893) (n=6-8 for each treatment). NP12 treatment results in significantly decreased phosphorylation at the putative GSK-3 β -directed sites Ser-202 (CP13) and Ser-396/404 (PHF-1) in 15-month-old mice by more than 60% (p=0.023 and p=0.024, respectively)^[2]. Injection of Tideglusib (NP031112) (50 mg/kg) into the rat hippocampus dramatically reduces kainic acid-induced inflammation, as measured by edema formation using T2-weighted magnetic resonance imaging and glial activation and has a neuroprotective effect in the damaged areas of the hippocampus^[3]. All products are for RESEARCH USE ONLY. Not for diagnostic & therapeutic purposes!