

Crenolanib

Catalog No: tcsc0566

Available Sizes
Size: 5mg
Size: 10mg
Size: 50mg
Size: 100mg
Specifications
CAS No: 670220-88-9
Formula: C ₂₆ H ₂₉ N ₅ O ₂
Pathway: Protein Tyrosine Kinase/RTK;Autophagy
Target: PDGFR;Autophagy
Purity / Grade: >98%
Solubility: 10 mM in DMSO
Alternative Names: CP-868596
Observed Molecular Weight: 443.54

Product Description

Crenolanib is a potent and selective inhibitor of **PDGFR** α/β , **FLT3** with **K**_d of 2.1 nM/3.2 nM, 0.74 nM, respectively, sensitive to D842V mutation not V561D mutation, and > 100-fold more selective for PDGFR than c-Kit, VEGFR-2, TIE-2, FGFR-2, EGFR, erbB2, and Src.

IC50 & Target: Kd: 2.1 nM (PDGFRα), 3.2 nM (PDGFRβ), 0.74 nM (FLT3)

In Vitro: Crenolanib has 25-fold more affinity for PDGFRA/B compared with KIT, and is approximately 135-fold more potent than imatinib for inhibiting the PDGFRA D842V mutation. The IC $_{50}$ for crenolanib for a KIT exon 11 deletion mutant kinase is greater than 1,000 versus 8 nM for imatinib. Crenolanib has low nanomolar potency against the V561D + D842V-mutant kinase that is similar to its potency against the isolated D842V mutation. Both imatinib and crenolanib potently inhibit the kinase activity of the fusion oncogene with IC $_{50}$ values of 1 and 21 nM, respectively, and inhibits PDGFRA activation in this cell line with IC $_{50}$ values of 93 and 26 nM, respectively. HL60/VCR and K562/ABCB1 cells, overexpressing ABCB1, are 6.9- and 3.6-fold resistant to crenolanib, respectively, in relation to parental HL60 and K562 cells. PSC-833 fully reverses resistance to crenolanib in both HL60/VCR and K562/ABCB1 cells. Crenolanib (1 nM-10 μ M) stimulates ABCB1 ATPase activity in a concentration-dependent manner. Crenolanib treatment does not increase the cell surface expression of ABCB1. Crenolanib inhibits [125 I]-IAAP photocrosslinking of ABCB1 at high concentrations, with 50 % inhibition at 10 μ M, but has little effect at lower concentrations, below 1 μ M $^{[2]}$. Crenolanib decreases NSCLC cell viability, induces apoptosis in NSCLC cells, and inhibits cell migration in NSCLC cells $^{[3]}$.

In Vivo: Crenolanib (10 mg/kg and 20 mg/kg) suppresses non-small-cell lung cancer tumor growth in vivo and induces tumor cell apoptosis, and the dosage of crenolanib applied is well tolerated by recipient mice^[3].

All products are for RESEARCH USE ONLY. Not for diagnostic & therapeutic purposes!