

Canagliflozin

Catalog No: tcsc0522

Available Sizes
Size: 5mg
Size: 10mg
Size: 50mg
Size: 100mg
Specifications
CAS No: 842133-18-0
Formula: C ₂₄ H ₂₅ FO ₅ S
Pathway: Membrane Transporter/Ion Channel
Target: SGLT
Purity / Grade: >98%
Solubility: DMSO : ≥ 50 mg/mL (112.48 mM)
Alternative Names: JNJ 24831754ZAE;JNJ 28431754;JNJ 28431754AAA;TA 7284
Observed Molecular Weight: 444.52

Product Description

Canagliflozin is a selective **SGLT2** inhibitor with IC_{50} of 2 nM, 3.7 nM, and 4.4 nM for mSGLT2, rSGLT2, and hSGLT2 in CHOK cells, respectively.

IC50 & Target: IC50: 2/3.7/4.4 nM (m/r/hSGLT2, in CHOK cells)[1]

In Vitro: Canagliflozin is a sodium glucose co-transporter (SGLT) 2 inhibitor. In a concentration-dependent fashion, Canagliflozin inhibits Na $^+$ -dependent 14 C-AMG uptake in CHO-hSGLT2 cells, with an IC $_{50}$ of 4.4 \pm 1.2 nM. Similar IC $_{50}$ values are obtained in CHO-rSGLT2 and CHO-mSGLT2 cells (IC $_{50}$ =3.7 and 2.0 nM for rat and mouse SGLT2, respectively). Canagliflozin inhibits 14 C-AMG uptake in CHO-hSGLT1 and mSGLT1 cells with IC $_{50}$ of 684 \pm 159 nM and >1,000 nM, respectively. At 10 μ M, Canagliflozin inhibits the facilitative (non-Na $^+$ -linked) GLUT-mediated 3H-2-DG uptake in L6 myoblasts by less than 50% [1].

In Vivo: Canagliflozin treatment (1 mg/kg) notably lowers renal threshold for glucose excretion (RT $_{\rm G}$) in Zucker diabetic fatty (ZDF) rats to 94 \pm 10 mg/dL. In the second study, an insulin infusion is given to lower blood glucose (BG) to approximately 25 mg/dL, and then the graded glucose infusion (GGI) is given to slowly raise BG to approximately 300 mg/dL. In ZDF rats treated with Canagliflozin (1 mg/kg), the relationship between BG and urinary glucose excretion (UGE) remains well-described by a threshold relationship with negligible UGE occurring when BG[1].

All products are for RESEARCH USE ONLY. Not for diagnostic & therapeutic purposes!