

Chelerythrine Chloride

Catalog No: tcsc0205

Available Sizes
ize: 5mg
lize: 10mg
lize: 50mg
ize: 100mg
Specifications
AS No: 895-92-9
ormula: 21 ^H 18 ^{CINO} 4
Pathway: GF-beta/Smad;Epigenetics;Autophagy
'arget: KC;PKC;Autophagy
Purity / Grade: •98%
olubility: DMSO : ≥ 3.9 mg/mL (10.16 mM)
Observed Molecular Weight: 83.82

Product Description

Chelerythrine Chloride is a potent, cell-permeable inhibitor of **protein kinase C**, with an IC_{50} of 660 nM, competitive with respect to

the phosphate acceptor and non-competitive with respect to ATP.

IC50 & Target: IC50: 660 nM (protein kinase C)

In Vitro: Chelerythrine inhibits the BcIXL-Bak BH3 peptide binding with IC $_{50}$ of 1.5 μM and displaces Bax, a BH3-containing protein, from BcIXL. Mammalian cells treated with Chelerythrine undergoes apoptosis with characteristic features that suggest involvement of the mitochondrial pathway^[1]. Chelerythrine treatment inhibits LPS-induced TNF-α level and NO production in LPS-induced murine peritoneal macrophages through selective inhibition of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) activation. Moreover, the effects of chelerythrine on NO and cytokine TNF-α production can possibly be explained by the role of p38 MAPK and ERK1/2 in the regulation of inflammatory mediators expression^[2]. Chelerythrine shows cytotoxic effect on the human monocytic leukaemia cells with LD $_{50}$ value of 3.46 μM. Two hours after LPS stimulation, cells influenced by sanguinarine and Chelerythrine significantly decline the CCL-2 expression by a factors of 3.5 and 1.9 [3]. Chelerythrine chloride significantly enhances the phosphorylation of ERK1/2 in a dose-dependent manner. In addition, chelerythrine chloride inhibits the phosphorylation of p38^[4].

In Vivo: Chelerythrine displays significant anti-inflammatory effects in experimentally induced mice endotoxic shock model in vivo through inhibition of LPS-induced tumor necrosis factor-alpha (TNF- α) level and nitric oxide (NO) production in serum^[2]. Chelerythrine chloride (5 mg/kg/day, i.p.) induces apoptosis of RCC cells without significant toxicity to mice. Chelerythrine Chloride treatment leads to a dose-dependent accumulation of p53^[4].

All products are for RESEARCH USE ONLY. Not for diagnostic & therapeutic purposes!