

Enzastaurin

Catalog No: tcsc0132

Available Sizes

Size: 5mg

Size: 10mg

Size: 100mg

Size: 200mg

Size: 500mg

Size: 500mg

Size: 500mg

CAS No:

170364-57-5

Formula:

 $C_{32}H_{29}N_5O_2$

Pathway:

Target:

PKC;PKC;Autophagy

Purity / Grade:

>98%

Solubility:

H2O :

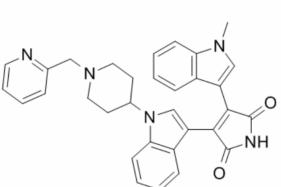
Alternative Names: LY317615

Copyright 2021 Taiclone Biotech Corp.

Observed Molecular Weight:

515.61

Product Description


Enzastaurin is a potent **PKC** β selective inhibitor with **IC**₅₀ of 6 nM, 6- to 20-fold selectivity against PKC α , PKC γ and PKC ϵ .

IC50 & Target: IC50: 6 nM (PKCβ)

In Vitro: Enzastaurin increases apoptosis in malignant lymphocytes of CTCL. When combined with GSK3 inhibitors, enzastaurin demonstrates an enhancement of cytotoxicity levels. Treatment with a combination of enzastaurin and the GSK3 inhibitor AR-A014418 leads to increased levels of β -catenin total protein and β -catenin-mediated transcription. Blocking of β -catenin-mediated transcription or small hairpin RNA (shRNA) knockdown of β -catenin induces the same cytotoxic effects as that of enzastaurin plus AR-A014418. Additionally, treatment with enzastaurin and AR-A014418 decreases the mRNA levels and surface expression of CD44^[1].

Enzastaurin application results in a marked dose-dependent inhibition of growth in all MM cell lines investigated, including MM.1S, MM.1R, RPMI 8226 (RPMI), RPMI-Dox40 (Dox40), NCI-H929, KMS-11, OPM-2, and U266, with IC₅₀ from 0.6-1.6 μ M. Enzastaurin direct impacts human tumor cells, inducing apoptosis and suppressing proliferation in cultured tumor cells. Enzastaurin also suppresses the phosphorylation of GSK3 β ser9, ribosomal protein S6S240/244, and AKTThr308 while having no direct effect on VEGFR phosphorylation^[3].

In Vivo: Treatment of xenografts with Enzastaurin and radiation produces greater reductions in density of microvessels than either treatment alone. The decrease in microvessel density corresponds to delayed tumor growth^[2].

All products are for RESEARCH USE ONLY. Not for diagnostic & therapeutic purposes!

Copyright 2021 Taiclone Biotech Corp.