

Fedratinib

524.68

Catalog No: tcsc0052

	Available Sizes
Size:	5mg
Size:	10mg
Size:	50mg
Size:	100mg
	Specifications
CAS 93609	No: 91-26-8
Form	ula: 36 ^N 6 ^O 3 ^S
Path Epige	way: netics;Stem Cell/Wnt;JAK/STAT Signaling
Targ o	et: K;JAK
Purit >98%	y / Grade:
	oility: 0 : ≥ 42 mg/mL (80.05 mM)
	native Names: 01348;SAR 302503
Obse	rved Molecular Weight:

Product Description

Fedratinib (TG-101348) is a selective inhibitor of **JAK2** with an **IC**₅₀ of 3 nM, showing 35- and 334-fold selectivity over JAK1 and JAK3, respectively.

IC50 & Target: IC50: 3 nM (JAK2)[1]

In Vitro: Fedratinib (TG-101348) significantly inhibits JAK2 V617F, Flt3, and Ret with IC $_{50}$ of 3 nM, 15 nM, and 48 nM, respectively. TG101348 has an IC $_{50}$ appr 300-fold higher for the closely related JAK3 and is a less potent inhibitor of the JAK1 and TYK2 family members. Fedratinib (TG-101348) inhibits proliferation of a human erythroblast leukemia (HEL) cell line that harbors the JAK2V617F mutation, as well as a murine pro-B cell line expressing human JAK2V617F (Ba/F3 JAK2V617F), with IC $_{50}$ of 305 nM and 270 nM, respectively. Fedratinib (TG-101348) also inhibits proliferation of parental Ba/F3 cells to a comparable level, with IC $_{50}$ of appr 420 nM. Fedratinib (TG-101348) treatment reduces STAT5 phosphorylation at concentrations that parallel the concentrations required to inhibit cell proliferation. Fedratinib (TG-101348) induces apoptosis in both HEL and Ba/F3 JAK2V617F cells in a dose-dependent manner. Fedratinib does not show proapoptotic activity in control normal human dermal fibroblasts at concentrations up to 10 μ M, and the antiproliferative IC $_{50}$ against fibroblasts is >5 μ M $^{[1]}$. Fedratinib (TG-101348) treatment decreases GATA-1 expression, which is associated with erythroid-skewing of JAK2V617F+ progenitor differentiation, and inhibits STAT5 as well as GATA S310 phosphorylation $^{[2]}$. Fedratinib (TG-101348) inhibits the proliferation of HMC-1.1 (KITV560G) cells, with somewhat lower potency than HMC-1.2 (KITD816V, KITV560G) cells, with IC $_{50}$ of 740 nM and 407 nM, respectively $^{[3]}$.

In Vivo: Fedratinib (TG-101348) has potential for efficacious treatment of JAK2V617F-associated myeloproliferative diseases (MPD). In treated animals, there is a statistically significant reduction in hematocrit and leukocyte count, a dose-dependent reduction/elimination of extramedullary hematopoiesis, and, at least in some instances, evidence for attenuation of myelofibrosis, correlated with surrogate endpoints, including reduction/elimination of JAK2V617F disease burden, suppression of endogenous erythroid colony formation, and in vivo inhibition of JAK-STAT signal transduction. There are no apparent toxicities and no effect on T cell number^[1]. Oral administration of Fedratinib (TG-101348) (120 mg/kg) significantly inhibits PV progenitor erythroid differentiation in vivo^[2].

All products are for RESEARCH USE ONLY. Not for diagnostic & therapeutic purposes!