

6,2'-Dihydroxyflavone

Catalog No: tcsc0040249

Available Sizes

Size: 50mg

Specifications

CAS No:

92439-20-8

Formula:

 $C_{15}H_{10}O_4$

Pathway:

Neuronal Signaling; Membrane Transporter/Ion Channel

Target:

GABA Receptor; GABA Receptor

Purity / Grade:

>98%

Solubility:

DMSO: 155 mg/mL (609.66 mM; Need ultrasonic and warming)

Observed Molecular Weight:

254.24

Product Description

6,2\'-Dihydroxyflavone is a novel antagonist of $GABA_{\Delta}$ receptor.

IC50 & Target: GABA_A receptor^[1]

In Vitro: 6,2\'-Dihydroxyflavone is a novel antagonist of GABA_A receptor. 6,2\'-Dihydroxyflavone inhibits [3 H]-flunitrazepam binding to the rat cerebral cortex membranes with a K_i of 37.2±4.5 nM. The current elicited with the EC₅₀ concentration of GABA is decreased to 73.6±1.9% of control by co-application of 5 μ M 6,2\'-Dihydroxyflavone (n=5), compare to a decrease to 65.9±3.0% by 1 μ M FG-7142 (n=5). The EC₅₀ for GABA dose response increases from 47.6 to 59.7 μ M upon co-application of 5 μ M 6,2\'-

Dihydroxyflavone, and the maximal GABA-current is decreased [1].

In Vivo: 6,2\'-Dihydroxyflavone-treated mice exhibit significant differences from control mice with respect to the percentage of open arms entries $[F_{(4,73)}=8.01, P(4,73)=5.19, P(4,73)=0.79, P=0.54]$. The post-hoc NewmaneKeuls' tests confirm that 6,2\'-Dihydroxyflavone significantly decreases the percentage of open arm entries and time spent in open arms at the doses of 8 and 16 mg/kg. 6,2\'-Dihydroxyflavone treatment similarly increases step-through latency $[F_{(4.75)}=4.71, P[1]]$.

All products are for RESEARCH USE ONLY. Not for diagnostic & therapeutic purposes!