

Neuronostatin-13 (human)

Catalog No: tcsc0033034

Available Sizes
Size: 1mg
Size: 5mg
Specifications
CAS No: 1096485-24-3
Formula: C ₆₄ H ₁₁₀ N ₂₀ O ₁₆
Pathway: Others
Target: Others
Purity / Grade: >98%
Solubility: H2O
Observed Molecular Weight: 1415.68

Product Description

Neuronostatin-13 human is a 13-amino acid peptide hormone encoded by the somatostatin gene and plays an important role in the regulation of hormonal and cardiac function.

In Vitro: Neuronostatin-13 human is a 13-amino acid peptide hormone encoded by the somatostatin gene and plays an important role in the regulation of hormonal and cardiac function. Treatment with Neuronostatin-13 human (1,000 nM) enhances low-glucose-induced glucagon release compare with islets treated with control medium alone. Treatment with Neuronostatin-13 human for 1 h

leads to a significant increase in the accumulation of glucagon mRNA compare with vehicle-treated control cells. In α TC1-9 α -cells, treatment with 100 nM Neuronostatin-13 human leads to an increase in phosphorylated PKA at 30 and 40 min^[1].

In Vivo: Infusion with Neuronostatin-13 human delays glucose clearance in the rat model, such that blood glucose levels in Neuronostatin-13 human-treated animals are significantly higher at 1 and 10 min following intra-arterial injection of a glucose bolus ^[1]. Chocardiographic measurement reveals a remarkable drop in heart rate after 3-, 6- and 12-hr of Neuronostatin-13 human challenge. In addition, Neuronostatin-13 human treatment significantly decreases left ventricular end-systolic diameter (LVESD) and fractional shortening without affecting left ventricular end-diastolic diameter (LVEDD) between 6 and 12 hrs following Neuronostatin-13 human challenge, the effect of which returns to basal level 18-hr after Neuronostatin-13 human treatment ^[2].

All products are for RESEARCH USE ONLY. Not for diagnostic & therapeutic purposes!