Diphenyleneiodonium chloride Catalog No: tcsc0020645 | Available Sizes | |---| | Size: 10mg | | Size: 50mg | | Size: 100mg | | Specifications | | CAS No:
4673-26-1 | | Formula:
C ₁₂ H ₈ CII | | Pathway:
Membrane Transporter/Ion Channel | | Target: TRP Channel | | Purity / Grade: >98% | | Solubility:
DMSO : 6 mg/mL (19.07 mM; Need ultrasonic and warming) | | Alternative Names: DPI | | Observed Molecular Weight:
314.55 | | Product Description | Diphenyleneiodonium chloride is a **NADPH oxidase** (**NOX**) inhibitor and also functions as a **TRPA1** activator with an **EC**₅₀ of 1 to 3 μ M. IC50 & Target: NOX^[1] EC50: 1 to 3 μ M (TRPA1)^[1] In Vitro: Diphenyleneiodonium chloride is a NADPH oxidase (NOX) inhibitor and also functions as a TRPA1 activator with an EC $_{50}$ of 1 to 3 μ M. Application of Diphenyleneiodonium chloride to HEK-TRPA1 cells at a concentration ranges of 0.03 to 10 μ M effectively induces a Ca $^{2+}$ response. However, Diphenyleneiodonium chloride fails to evoke a Ca $^{2+}$ response in control HEK cells, even at a relatively high dose of 10 μ M $^{[1]}$. When Diphenyleneiodonium chloride is included in the co-cultures, lipopolysaccharide (LPS)-induced preOL apoptosis is significantly inhibited. Treatment with Diphenyleneiodonium chloride is found to significantly attenuate the LPS-induced O $_{2}$ production by 2.0-fold, reducing it to within 27% of the controls $^{[2]}$. *In Vivo:* Intraplantar injection of 2 mM Diphenyleneiodonium chloride to the hindpaw causes licking or biting behavior^[1]. Diphenyleneiodonium chloride treatment immediately or 24 h after lipopolysaccharide (LPS) injection significantly attenuates the LPS-induced loss of O4 positive cells. Treatment with Diphenyleneiodonium chloride either immediately or 24 h after LPS injection significantly ameliorates the LPS-induced disorganization of the white matter nerve fibers. However, treatment with DPI 48 h after LPS injection does not appear to correct the LPS-induced white matter damage. DPI treatment either immediately or 24 h after LPS injection significantly reduces the accumulation of both gp91phox and p67phox in the membrane fraction^[2]. All products are for RESEARCH USE ONLY. Not for diagnostic & therapeutic purposes!