NS1652 Catalog No: tcsc0018395 | Availa | able Sizes | | | |--|-----------------------|--|--| | Size: 1mg | | | | | Size: 5mg | | | | | Size: 10mg | | | | | Specif | fications | | | | CAS No: 1566-81-0 | | | | | Formula: C ₁₅ H ₁₁ F ₃ N ₂ O ₃ | 3 | | | | Pathway: Membrane Tra | ansporter/Ion Channel | | | | Target:
Chloride Chan | nnel | | | | Purity / Grad
>98% | de: | | | | Solubility: 10 mM in DMS | 50 | | | | Observed Mo | olecular Weight: | | | ## **Product Description** NS1652 is a reversible **anion conductance** inhibitor, blocks **chloride channel**, with an IC_{50} of 1.6 μ M in human and mouse red blood cells. IC50 & Target: IC50: 1.6 μM (chloride channel, human and mouse red blood cell) $^{[1]}$ In Vitro: NS1652 potently inhibits the chloride conductance (IC $_{50}$, 1.6 μ M) in human and mouse red blood cells, but only weakly inhibits VRAC (IC $_{50}$, 125 μ M) in HEK293 cells. NS1652 markedly blocks the NO production with an IC $_{50}$ of 3.1 μ M in BV2 cells. NS1652 also down-regulates iNOS expression at 3 μ M, and completely abolishes at 10 μ M in BV2 cells^[1]. NS1652 (0, 1.0, 3.3, 10, and 20 μ M) causes increasing hyperpolarization due to inhibition of the chloride conductance in normal erythrocytes. NS1652 lowers the net KCl loss from deoxygenated sickle cells from about 12 mM cells/h to about 4 mM cells/h. NS1652 (20 μ M) completely and reversiblely inhibits the red cell Cl⁻conductance^[2]. In Vivo: NS1652 (50 mg/kg, i.v.) blocks murine erythrocyte Cl^- conductance by >90% in mice^[2]. All products are for RESEARCH USE ONLY. Not for diagnostic & therapeutic purposes!