

Sucrose

Catalog No: tcsc0013810

Size: 100mg Specifications CAS No: 57-50-1 Formula: C12H22O11
CAS No: 57-50-1 Formula: C ₁₂ H ₂₂ O ₁₁
57-50-1 Formula: C ₁₂ H ₂₂ O ₁₁
C ₁₂ H ₂₂ O ₁₁
D_4b
Pathway: Others
Target: Others
Purity / Grade: >98%
Solubility: H2O : 100 mg/mL (292.14 mM; Need ultrasonic and warming)
Alternative Names: D-(+)-Saccharose

Product Description

342.3

Observed Molecular Weight:

Sucrose is a disaccharide which is composed of two monosaccharides, glucose and fructose.

In Vivo: Sucrose is a disaccharide which is composed of two monosaccharides, glucose and fructose. Compare to chow-feeding, high-energy (HE)-feeding results in an overall decreased preference for Sucrose solutions in both strains. Specifically, obesity-prone (OP) rats prefer 0.3 M and 1.0 M Sucrose solutions less during HE-feeding relative to chow-feeding (P=0.046 and P=0.012,

respectively). As well, obesity-resistant (OR) rats exhibit decreased preferences for 0.01 M, 0.03 M, and 1.0 M Sucrose when HE-fed compare to chow-fed counterparts (P[1].

All products are for RESEARCH USE ONLY. Not for diagnostic & therapeutic purposes!