

Rosiglitazone

Catalog No: tcsc1088

Available Sizes

Size: 50mg

Size: 200mg

Specifications

CAS No:

122320-73-4

Formula:

 $C_{18}H_{19}N_3O_3S$

Pathway:

Cell Cycle/DNA Damage; Membrane Transporter/Ion Channel; Autophagy

Target:

PPAR;TRP Channel;Autophagy

Form:

White to off-white (Solid)

Purity / Grade:

99.48%

Solubility:

DMSO : \geq 110 mg/mL (307.75 mM)

H2O:

Storage Instruction:

Powder -20°C for 3 years; 4°C for 2 years In solvent -80°C for 6 months; -20°C for 1 month

Alternative Names:

BRL49653;2,4-Thiazolidinedione, 5-[[4-[2-(methyl-2-pyridinylamino)ethoxy]phenyl]methyl]-

Observed Molecular Weight:

357.43

Product Description

Rosiglitazone (BRL49653) is a potent thiazolidinedione insulin sensitizer. Rosiglitazone is a selective **PPAR** γ agonist with **EC**₅₀s of 30 nM, 100 nM and 60 nM for **PPAR** γ 1, **PPAR** γ 2, and **PPAR** γ , respectively.

IC50 & Target: EC50: 30 nM (PPAR γ 1), 100 nM (PPAR γ 2)^[1], 60 nM (PPAR γ)^[2], appr 30 nM (TRPC5)^[4]

Kd: appr 40 nM (PPARy)^[1]

IC50: appr 22.5 μ M (TRPM2)^[4]

In Vitro: Rosiglitazone is a potent and selective activator of PPAR γ , with EC $_{50}$ s of 30 nM and 100 nM for PPAR γ 1 and PPAR γ 2, respectively, and a K $_{d}$ of appr 40 nM for PPAR γ . Rosiglitazone (BRL49653, 0.1, 1,10 μ M) promotes differentiation of C3H10T1/2 stem cells to adipocytes^[1]. Rosiglitazone (Compound 6) activates PPAR γ , with an EC $_{50}$ of 60 nM^[2]. Rosiglitazone (1 μ M) activates PPAR γ , which binds to NF- α 1 promoter to activate gene transcription in neurons. Rosiglitazone (1 μ M) also protects Neuro2A cells and hippocampal neurons against oxidative stress, and up-regulates BCL-2 expression in an NF- α 1-dependent manner^[3]. Rosiglitazone completely inhibits TRPM3 with IC $_{50}$ values of 9.5 and 4.6 μ M against nifedipine- and PregS-evoked activity, but such effects are not via PPAR γ . Rosiglitazone inhibits TRPM2 at higher concentration, with an IC $_{50}$ of appr 22.5 μ M. Rosiglitazone is a strong stimulator of TRPC5 channels, with an EC $_{50}$ of ~30 μ M^[4].

In Vivo: Rosiglitazone (5 mg/kg, p.o.) decreases the serum glucose in diabetic rats. Rosiglitazone also decreases IL-6, TNF- α , and VCAM-1 levels in diabetic group. Rosiglitazone in combination with losartan increases glucose compared to diabetic and Los-treated groups. Rosiglitazone significantly ameliorates endothelial dysfunction indicated by a significantly lower contractile response to PE and Ang II and enhancement of ACh-provoked relaxation in aortas isolated from diabetic rats^[5].

Protocol

Preparing Stock Solution	Volume Mass Concentration	1 mg	5 mg	10 mg
	1mM	2.7978 mL	13.9888 mL	27.9775 mL
	5mM	0.5596 mL	2.7978 mL	5.5955 mL
	10mM	0.2798 mL	1.3989 mL	2.7978 mL

All products are for RESEARCH USE ONLY. Not for diagnostic & therapeutic purposes!